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’ Summary 
I 

An asymptotic analysis is done for flow through and 
around screens with small resistance coefficients. Both 
steady and oscillatory flows are considered, but only the 
case of a screen normal to the flow is treated. At second 
order in the asymptotic expansion the steady flow normal 
to the screen is nonuniform along the screen, due to 
components induced by the wake and by tangential drag. 
Therefore, the third-order pressure drop is nonuniform 
and the wake contains distributed vorticity, in addition to  
the vortex sheet along its boundary. The unsteady drag 
coefficient is found as a function of frequency. 

I Introduction 
A two-dimensional screen of finite height, placed into 

an otherwise uniform flow, acts as a resistant surface SO 

fluid can pass through the screen only if driven by a 
pressure drop. Fluid which passes around the screen will 
not suffer a resistive pressure drop so that, by Bernoulli’s 
equation and continuity of pressure at the edge of the 
screen, it must have a higher velocity than the fluid in the 
wake. Hence, ideally the wake behind a screen is bounded 
by a vortex sheet (fig. 1). In general, Vorticity xi!! a!sc be 
distributed throughout the wake. 

The strength of the wake vortex sheet depends on the 
porosity of the screen, as modelled by screen resistance 
coefficients. In this report an analysis is done for screens 
with asymptotically small resistance. Only a uniform 
screen normal to the oncoming flow will be considered. It 
is found that the distributed wake vorticity is small, of 
third order, in the resistance coefficient. 

An analysis of flow around a very porous screen was 
made by Taylor (ref. 1). He represented the screen by a 
sheet of sources whose strengths were chosen to  give the 
appropriate pressure drop across the screen. Because he 
ignored flow induced by wake vorticity and effects of the 
sources within the sheet upon each other, Taylor’s 
velocity field is formally accurate only to  0 ( k )  , where k 
is the small resistance coefficient of the screen. (BY 
formally accurate we mean his approximation agrees with 
an exact asymptotic expansion to O ( k )  . However, 
Taylor did not expand his solution in powers of k.  The 
form in which he expressed his drag coefficient agrees 
with experiment up to  k=4.) 

Taylor’s distributed source analysis was extended by 
Koo and James (ref. 2). They introduced a wake in an ad 
hoc fashion and ignored the flow in front of the screen 
induced by wake vorticity. Also, the inviscid condition 
that vorticity be a function of the stream function 
generally is not met by their model. Their model also 
produces spurious jumps of the tangential velocity across 
the screen and of the pressure across the wake boundary. 
All in all, Koo and James’ model does not improve on the 
formal accuracy of Taylor’s solution; however, it 
provides a good fit to data on drag coefficients (Graham, 
ref. 3). The present report is concerned more with the 
formal solution of governing equations than with robust 
modelling. 

The Approximate Analysis section of this report 
describes an approach which agrees with the Asymptotic 
Analysis section (p. 4)  to O ( k )  in thc velocity field. The 
approximate solution could be obtained by summing an 
infinite subset of terms in the formal asymptotic 
expansion; in the Approximate Analysis section the 
solution is derived by omitting the tangential drag on the 
screen and by ignoring the dynamical effect of wake 
vorticity. Thus, this approximation is analogous to 
Taylor’s but, because it includes different higher order 
terms, it produces a different solution. 

iii the Asymptotic Analysis section a formal 
asymptotic expansion is carried out to O(k2j. At iiiis 
order effects of tangential drag and of wake vorticity 
have entered the solution, and the distributed wake 
vorticity is found. 

In the Unsteady Flow section (p. 7) the drag coefficient 
of a screen in oscillatory uniform flow is calculated. 

Governing Equations 
We wish to solve the inviscid flow equations, subject to 

certain jump conditions which model the effect of a 
screen on the flow. Nondimensional variables will be 
used in which the fluid density, screen half-height, and 
upstream velocity are unity. The resistance coefficient k 
determines the pressure drop across the screen [PI 
through 
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Figure 1.-Defining sketch of screen between two  walls. 

(ref. 1) where U(x=O) is the velocity normal to the screen 
and the screen lies along x=O, bl< 1 (fig. 1). The 
tangential resistance coefficient B determines the jump in 
tangential velocity [VI: 

where V, is the tangential velocity on the upstream side 
of the screen. 
Mass conservation across the screen requires that 

These jump conditions must be satisfied by solutions t o  
the momentum and continuity equations: 

ap au au 
ax ax aY 

= u  - + v  - - _  

ap av av 
aY ax ay 

= u  - + v  - - _  

au av 
ax ay - + - = o  

(3) 

For flow confined by wind tunnel walls at bI=d,  an 
additional boundary condition is V = O  on the walls. The 
upstream condition is U -  1, V-0 as x- -m. 

Approximate Analysis 
In the next section an asymptotic analysis for k--C 

be done. Here a less formal approach is used, althou, 
still is valid o n v  when k<< 1 ;  it agrees with 
asymptotic analysis to  O ( k ) .  This approximate anal 
illustrates the general approach of this report. 

Substituting U=l+u, V=v, and H=P+1/2 (u2t  
into equations ( 3 )  gives 

aH au 
ax ax - vw 

- 

aH av 
ay ax 

-~ _ -  - +uw 

Here w = av/ax- 

(1 

I is L..e vorticity, which vanishes 
outside of the wake. If w is set identically to zero in 
equation (4), H satisfies Laplace's equation. Let R be the 
harmonic conjugate to  H so that H + i R  is an analytic 
function in the complex plane cut along the screen. If B is 
set t o  zero, then [H]=[Pl=1/2 kU2 (O,k1<1) and 
[R] = [ v] = 0 (see eq. (6 ) ) .  Now, by the Plemelj formulas 
(ref. 4) and the boundary conditions to the problem, the 
analytic function H +  iR is found to be 
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outside the wake and 
H + i R = -  

where z = x +  iy. This satisfies H-0 as x- -GO and R = 0 
on b I = d. The latter is required because, from equation 
(4) with w = 0 and the Cauchy-Riemann relations, 

It turns out that U(O,bI< 1) is independent of y .  If its 
value is denoted by Us, equation (5) becomes 

’ 
l 

where the branch cut of the logarithm is on the screen. 
Using equation (4) with w = 0 gives 

kU: 
2 ’ U = - H + 1 -  ~ f ( y )  

~ where f ( y )  is an arbitrary function of y ,  except for a 
possible jump across the screen. To satisfy equation (2b) 
and the upstream condition U =  1, 

(9) 

Hence, U is discontinuous across the wake boundary 
(x>O,Lv = l),  which is a vortex sheepof strength 112 kU:. 

Us is found by evaluating equation (8) on the screen, 
where U= Us. Thus, 

I 
I - 2 + 2 d l  + k - ( k / d )  

Us = 
k - ( k / d )  

1 
Equations (6)  to (10) determine the flow field for given d 
and k .  For instance, the drag coefficient for the screen is 1 

and far downstream the velocity is 

k U: 
l +  2d 

1 - 1  kU: ( 1 - a )  
2 

inside the wake. 
Expression (12a) agrees excellently with the data in 

figure 7 of Koo and James (ref. 2) where data extend to  
k=9. Expression (12b) agrees with the data in their figure 
8 up to  k = 3 ,  after which it falls below the data. Thus, 
when the present approximation is extended beyond its 
range of validity it gives wake velocities which are lower 
than observed. (Indeed, expression (12b) becomes 
negative at large k.) Equation (1 1) with d = 03 is plotted as 
C, versus k in figure 2, along with data transcribed from 
Graham (ref. 3). In cases where k was not measured, 
Graham used the formula k = ( P P 2 -  1) to relate k to the 
screen open area ratio 0. Laws and Livesey (ref. 5) state 
that the formula k = 0.52 ( P - 2  - 1) is in better agreement 
with measurements; the latter formula was used in 
transcribing the data. Also shown in figure 2 are results 
from Koo and James’ model and a Pade approximant to 
the two-term asymptotic expansion (see eq. (53)). For k 
greater than about 4 the flow through a screen becomes 
unstable and a recirculating wake may begin to form 
(Laws and Livesey, ref. 5 ) .  There is no basis for the 
present analysis at these higher values of k. 

In the solution (8), the wake upper boundary is the line 
y = 1, x>O. In the following asymptotic analysis, to 
lowest order, the wake rises above y =  1 a distance s(x) 
given by 

X 
s(x) = r T/ (x’;y= 1) dx’ = 

J O  

Y 

T 
sinh - x ‘  

sinh - (x’ +2i) 
(13) 

- 31; Re I n  ~d 2d ] d x f  
4T 

Equations (6 )  and (7) were used to obtain I/. When d- 

In figure 3 s(x)/kU: is plotted for several values of d. 
Also shown are experimental data measured in the NASA 
Lewis 20 by 30 inch (Boy Scout) wind tunnel. In the 
experiments d = 2  and k=2.0 and 0.6. Although the 
experimental wake boundary was very sharp initially, it 
became diffuse further downstream: the data indicate the 
height above the screen of the centerline of the shear 
layer. The data were normalized by the theoretical k U i  
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Figure 2.-Drag coefficient as function of resistance coefficient. 
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Figure 3.-Wake boundary as computed from equation (13) for values of d indicated. 

found from equation (lo). I t  is seen that when k < 2  
theory and experiment agree. The experiments were done 
in collaboration with Mr .  D. McKinzie (NASA Lewis 
Research Center) in  the initial phases of a study on shear 

u = u 0 + k u 1 + k 2 u 2  ... 

~ l ~ ~ ,  B is  assumed of the form 

flow instability. B = kB1 + k2Bz + k 3 B 3  ... 

Asymptotic Analysis Only the unbounded case, d =  03, is treated. 
At lowest order 

For this analysis we return to equations ( 1 )  to (3) ,  and 
an expansion i n  powers of k is sought: for example, uo= 1,  Po=O, vo=o 
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At order k,  equations (1) to (3) become 

-apl - au, 
ax ax 

-apl  - av, 
ay ax 

I au, av 
~ + -! = o  
ax ay 

with [Ul]  = 0 =  [ V I ] ,  [ P I ]  = 112. Equations (15) are 
essentially the same as equations (4) with w=O.  Their 
solution is found by letting d-oo and setting kU:= 1 in 
equation (7): 

-1  
4ai 

Pl+iQl=-  In 

and with equations (6)  and (8) 

Note that this velocity is logarithmically singular at the 
edges of the screen. Hence, the expansion breaks down in 
a small region around the edges, order e- l ’ k .  

In equations (16) the screen wake lies in x>O, b i < l ,  
because f(y) is nonzero there (eq. (9)). This representation 
of the wake woiikl icsu!t in nonuniformity of the asymp- 
totic expansion at the edge of the wake because df/dy= 
- sgn(y) S(k1- 1). To avoid nonuniformity, we replace 

f ( y )  by f(y-sgn(y) s(x)) with s=ks l+k&+k3~3+ . . . , 
so that the upper boundary of the wake lies on y = 1 + s(x). 
This does not affect the first order solution (16). 

At order k2, equations (1) to (3) become 

-ap2 - au2 + - -  1 dsl 1 - af I +u1-+v, -  au1 
ax ax 2 dx ay ax 

- ap2 - av2+ul av, - + v l  - a V1 
ay ax ax aY 

au, av, 
ax ay 

- + - - 0  

Taking 

i (17) 

removes the singularity (i.e., the &-function associated 
with aU,/ay) from the first of equations (17). Thus, s1 is 
given by equation (14) with kU:= 1. 

Now, if we let 

then equations (17) can be written 

- a ~ ,  - au, 
ax ax 

- a ~ ,  - av, 1 af +-u1- 
ay ax 2 ay 

These equations indicate that V2H2 = 0 except for a jump 
across the vortex sheets of 

(H2) = i Ul(x-,k.l= 1) sgn(y) 

The angled brackets denote a jump across the sheets. 
Ul(x,lyI= 1) is to be understood as the average of the 
velocities just above and just below 1 = 1, so 

Again, it is convenient to introduce the harmonic 
conjugate to  H2,Rz; then from equations (18), V 2 = R 2 .  
The jump of R2 across the vortex sheets is found by 
removing a nonuniformity in the equations at next order 
(analogously to what was done with eqs. (17)). Doing so 
gives 

on the upper vortex sheet O,= 1, x>O). The jump of this 
equation is 

where dsl/dx= Vl(x,l) has been used. Also on the lower 
sheet 



1 
(R2) = 5 Ql(x,l) 

On the screen conditions (1) and (2) give 

(21) 
1 

[H2]=(/1(0,1y1<1)= - - 4 

by using equations (16) and 

[R21= BI Q I  (0, Iv I < 1 )  

Since [P2]= [H2], to  this order oA approximation the 
pressure drag is uniformly spread over the screen. 

A sectionally analytic function with jumps (eqs. (19) to 
(22)) is (Roos, ref. 4)  

1 O3 P~(X’ , l )+iQI(X’ , l )  + - s  x ’ - z + i  dx‘ 4s;  0 

To satisfy equation (2b) and the upstream condition U2, 
v2 - 0: 

(24) 
1 
4 Uz+iV*= -H2-iR2+ - f ( y )  

In equation (23) the first logarithm has branch cuts on the 
vortex sheets and the second is cut on the screen. 

It follows from equation (23) that at this order of 
approximation U is not constant on the screen; hence, the 
approximate analysis of the previous section breaks 
down. Also, since 

and U2 is a function of y on the screen, at third order the 
pressure drag is no longer uniformly distributed. This 
y-dependence of U2 is produced by wake vorticity and by 
the tangential drag on the screen. 

It follows from equation (25) and the preceding 
method of analysis that at third order the downstream 
velocity inside the wake is 

for y <  1 .  Hence, the velocity is nonuniform within the 
wake or, in other words, vorticity is distributed 
throughout the wake. 

The total third-order drag coefficient of the screen is 

Substituting equation (16a) into equation (23) shows that 
the integrals required to  evaluate equation (27) can be 
done in closed form. The result is 

n =  1 

Thus, to  third order, 

k2 5k3 
2 48 CD=k- - + - -0.0833Blk3 

The net tangential drag on half the screen is 

to  third order. Using equation (2a) gives 

Using equations (23) and (24) for V2+ gives 

This is the tangential drag on a screen adjacent to a plane 
wall. 
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Unsteady Flow 
I 

The present approach can be applied to unsteady flow 
through a screen. Turbulent flow through a screen was 
analyzed by Graham (ref. 3). Here we consider an easier 
problem in which the unsteadiness is due to uniform 
pulsations of the flow. The governing equations (3) now 
have aU/at and aV/at added to  their right sides. The 
jump conditions (1) and (2) are assumed to remain valid 
at the frequency of interest. 

The pulsating flow will be taken as 

uo= 1 + a  cos w t  (31) 

I with a < 1. Then, at O(k) 

I 

- a p l  au, au, 
=uo ax + at ax 

, with [P l ]=1/2Ui  and U1, VI-0 as x - - w .  As in 
equation (16a) 

X - Tan - 1 L) ] (33) 
~ 

1 + Y  

I 
I with UO given by equation (31 j. i t  is coiiveniefit to rewrite 

this as 

m =  - 2  n=O 

where Tis  the term in brackets in equation (33), with the 
I y-argument suppressed. Comparing equation (34) with 
~ equation (33) gives 

, and all other gS's equal zero. 
I A solution to equation (32) will be sought in the form I 

m =  -m 9=0 
I 

(35) 

Substituting this and equation (31) into equation (32) and 
equating coefficients of aneimwt give 

- (9;n+l,q-l+dm-l.q+Ic.~9T,) = 4 h q + i m 4 m q  (36) 

for m >0, where primes denote differentiation with 
respect to x .  For m = 0, 

and t$mq can be found by solving equation (36) 
recursively in q. 
When q = 0, because @m, - 1 = 0, equation (36) becomes 

- 
- 4; - 1 .O - $mo$ ' = 4k0 + ima4m0 (38) 

where &'-0 as x -  -03; that is, 

(39) 

The function g(y) is determined by condition (26) and is 
zero outside the wake. Then a solution to equation (38) 
can be found as 

m 

r =  1 
4 m o ( ~ ) =  Ay&(x;rw) m>O 

I 

Clearly, Ai = 1. Substituting equations (39) and (41) into 
equation (38) and equating the coefficients of 3' and 
&-w) to zero yield 

The right side of this last equation is 0 when m = 2 .  
Hence, it follows that 
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As x-03, a4/4-m, so the expansion (35) is 
nonuniform in x. However, it is easily renormalized: 
equations (41) and (47) can be combined as 

Using equations (42) and (43) gives 

m rm 
*r A ,  = ~ 

(m - r)!  

with a1 = 1 and 
m - m + l  

+ A,“&w) + $ BYr&rw)+0( ,4)  (49) m -  1 
1 rmar 

mm (m-r ) !  
am= - ~ ___ r = 2  r =  I 

r =  1 

which completes the solution with 4-0.  
When q= 1 ,  equation (36) becomes 

with the x and y dependence suppressed. This form for 
the first term on the right side removes the 
nonuniformity. 

The preceeding solution for U l  enables one to calculate 
the unsteady drag on the screen to O(k2). 

The pressure jump at second order is 
for m >O. 4m + 1.0 is given by equation (41). A solution to 
equation ( 4 9 ,  using equation (37), is found readily in 
terms of &x;Q) and ar&x;Q)/aQ. The latter, which is 
abbreviated to a$ satisfies 

m =  -w 

Assuming 
by having used equations (31) and (35) with 4m defined 
by equation (49). This pressure is not constant on the 
screen, so the nonuniform drag occurs at lower order 
than in the steady case and is not due to wake effects. 

The second-order drag is determined by integrating 
equation (50) over the screen: 

r n l l  

and equating coefficients of a r m ) ,  a$ and Jin equation 
(45) to zero give 

1 
(m - l ) !  

Cm= ~ 
m =  -ca 

with 

From equation (40) with equation (33) for &x,y), 

For r =  1 and m > l  
+ c= 2 Tin t h i2 f l -y - In2 i f l  ] + _ _ ~  2TQ shi2Q (52) 

where shi and chi are the sinh and cosh integrals and y is 
Euler’s constant (Abramowitz and Stegun, ref. 6). The 
term D y  can be evaluated using equations (49) and (52) in 
equation (51). In particular, the term linear in CY is 

The By’ can be dcterniined recursively. Solutions for 
highcr values o f  q arc found similarly. 
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To second order, D +  kD1 =k2D2. Since [ P I ]  = 1/2 
D1= U i .  In the steady case, the Pade approximant 

k kD1 - 
1 - (kD2/D1) 1 

-- D =  
1 + - k  

2 

(53) 

fits experimental data quite well (fig. 2). Thus, it seems 
sensible to write 

(54) 

for the unsteady drag at frequency o. In figure 4 the real 
and imaginary parts of D ~ / N  are plotted against w with 
k =  1 ,  and in figure 5, IDlai is plotted for k s 4  with 
w=O.1, 1, and 10. 

a, .- .u 1 
9 .8 

6 .6 

I I 

isI 

A 
0 m a, 
c c" .4 
3 

. 2  

.1 

Figure 5 .  

.10 r- 

.08 c 

.02 P 
(b) 

0 2 4 6 8 10 
Frequency, w 

(a) Real parts of D ' / f f .  
(b) Imaginary part of D'/cr. 

Figure 4.-Unsteady drag coefficient as function of frequency w with 
k =  1. 
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.1 . 2  . 4  .6 .8  1 2 4 6 8 1 0  
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-Unsteady drag coefficient as function of k with frequency w = 0.1. 1 ,  and 10. 
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Concluding Remarks References 

A method for calculating steady or unsteady flow 
through very porous screens has been described. Good 
correspondence is found between theory and experiment 
by carrying out the asymptotic expansions to second 
order and using Pade approximants. Muramoto and 
Durbin have applied the present method to flow through 
inclined screens (paper submitted to AIAA 18th Fluid 
Dynamics and Plasma Dynamics and Lasers Conference, 
July 1985). In this case distributed wake vorticity appears 
at second order in the asymptotic expansion; the 
theoretical wake velocity profile is found to be in 
agreement with experimental data. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, December 18, 1984 
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